Integrated Renewable Energy Systems in Fruit and Vegetable Processing Industries: A Systematic Review
##plugins.themes.bootstrap3.article.main##
The exponential population growth will put great pressure on natural resources, agriculture, energy systems and waste production. New business models and innovative technological approaches are necessary to tackle these challenges and achieve the energy transition targets set by the European Commission. Renewable energy technologies and processes such as solar photovoltaic, solar thermal and anaerobic co-digestion have become a subject of interest and research as a solution that could be fully implemented in industries and solve several environmental and economic problems. This paper discusses the possibility of integrating and complement these technologies to maximize renewable energy production and circularity.
The review was performed with a funnel approach aiming to analyze broad to specific subjects. Beginning with a literature review on the various definitions of circular economy, bioeconomy, and circular bioeconomy, ultimately proposing a single definition according to an industrial and academic scope combination, followed by a systematization and assessment of data and literature regarding energy systems present state and projections. The next phase was to assess data and literature of the fruit and vegetable processing industry from an energy consumption and biowaste production perspective to consequently discussing technologies that could help manage problems identified throughout this review. This paper culminates in propounding an Integrated Renewable Energy System conceptual model that promotes energy and waste circularity, envisioning how industries could be designed or redesigned in the future, coupled with a circular bioeconomy business model.
References
-
World Bank, “Population Estimates and Projections,” 2019. https://datacatalog.worldbank.org/dataset/population-estimates-and-projections (accessed Aug. 28, 2019).
Google Scholar
1
-
FAO, “The future of food and agriculture: Trends and challenges.,” 2017. [Online]. Available: http://www.fao.org/3/i6583e/i6583e.pdf.
Google Scholar
2
-
FAO, “The Future of Food and Agriculture Alternative Pathways to 2050,” 2018. [Online]. Available: http://www.fao.org/3/I8429EN/i8429en.pdf.
Google Scholar
3
-
S. Kaza, L. C. Yao, P. Bhada-Tata, and F. Van Woerden, What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Washington, DC: Washington, DC: World Bank, 2018.
Google Scholar
4
-
Å. Stenmarck et al., “Estimates of European food waste levels,” 2016. [Online]. Available: https://www.eu-fusions.org/phocadownload/Publications/Estimates of European food waste levels.pdf%5Cnhttps://phys.org/news/2016-12-quarter-million-tonnes-food-logistics.html#nRlv.
Google Scholar
5
-
H. V. Singh, R. Bocca, P. Gomez, S. Dahlke, and M. Bazilian, “The energy transitions index: An analytic framework for understanding the evolving global energy system,” Energy Strateg. Rev., vol. 26, p. 100382, 2019, doi: https://doi.org/10.1016/j.esr.2019.100382.
Google Scholar
6
-
X.-C. Yuan, Y.-J. Lyu, B. Wang, Q.-H. Liu, and Q. Wu, “China’s energy transition strategy at the city level: The role of renewable energy,” J. Clean. Prod., vol. 205, pp. 980–986, Dec. 2018, doi: 10.1016/j.jclepro.2018.09.162.
Google Scholar
7
-
Q. Wang and S. Wang, “Is energy transition promoting the decoupling economic growth from emission growth? Evidence from the 186 countries,” J. Clean. Prod., vol. 260, p. 120768, Jul. 2020, doi: 10.1016/j.jclepro.2020.120768.
Google Scholar
8
-
S. Tagliapietra, G. Zachmann, O. Edenhofer, J.-M. Glachant, P. Linares, and A. Loeschel, “The European union energy transition: Key priorities for the next five years,” Energy Policy, vol. 132, pp. 950–954, Sep. 2019, doi: 10.1016/j.enpol.2019.06.060.
Google Scholar
9
-
R. Bocca, “Fostering Effective Energy Transition. 2020 edition.,” 2020. [Online]. Available: www.weforum.org.
Google Scholar
10
-
European Commission, “Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions the European Green Deal COM/2019/640 final,” 2019.
Google Scholar
11
-
European Commission, “Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions A New Industrial Strategy for Europe COM/2020/102 final,” 2020. [Online]. Available: https://ec.europa.eu/info/sites/info/files/communication-eu-industrial-strategy-march-2020_en.pdf.
Google Scholar
12
-
J. Korhonen, C. Nuur, A. Feldmann, and S. E. Birkie, “Circular economy as an essentially contested concept,” J. Clean. Prod., vol. 175, pp. 544–552, Feb. 2018, doi: 10.1016/j.jclepro.2017.12.111.
Google Scholar
13
-
EFM, “Ellen MacArthur Foundation,” 2020. https://www.ellenmacarthurfoundation.org/ (accessed Dec. 02, 2020).
Google Scholar
14
-
D. D’Amato et al., “Green, circular, bio economy: A comparative analysis of sustainability avenues,” J. Clean. Prod., vol. 168, pp. 716–734, Dec. 2017, doi: 10.1016/j.jclepro.2017.09.053.
Google Scholar
15
-
European Commission, “Innovating for Sustainable Growth: A Bioeconomy for Europe,” Ind. Biotechnol., vol. 8, no. 2, pp. 57–61, Apr. 2012, doi: 10.1089/ind.2012.1508.
Google Scholar
16
-
Institute for European Environmental Policy, “Promoting a circular, sustainable bioeconomy – delivering the bioeconomy society needs,” 2018. https://ieep.eu/news/promoting-a-circular-sustainable-bioeconomy-delivering-the-bioeconomy-society-needs (accessed Oct. 13, 2020).
Google Scholar
17
-
T. M. W. Mak, X. Xiong, D. C. W. Tsang, I. K. M. Yu, and C. S. Poon, “Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities,” Bioresour. Technol., vol. 297, p. 122497, Feb. 2020, doi: 10.1016/j.biortech.2019.122497.
Google Scholar
18
-
S. Coderoni and M. A. Perito, “Sustainable consumption in the circular economy. An analysis of consumers’ purchase intentions for waste-to-value food,” J. Clean. Prod., vol. 252, p. 119870, Apr. 2020, doi: 10.1016/j.jclepro.2019.119870.
Google Scholar
19
-
G. Garcia-Garcia, J. Stone, and S. Rahimifard, “Opportunities for waste valorisation in the food industry – A case study with four UK food manufacturers,” J. Clean. Prod., vol. 211, pp. 1339–1356, Feb. 2019, doi: 10.1016/j.jclepro.2018.11.269.
Google Scholar
20
-
N. Mirabella, V. Castellani, and S. Sala, “Current options for the valorization of food manufacturing waste: a review,” J. Clean. Prod., vol. 65, pp. 28–41, Feb. 2014, doi: 10.1016/j.jclepro.2013.10.051.
Google Scholar
21
-
Y. Jia, G. Alva, and G. Fang, “Development and applications of photovoltaic–thermal systems: A review,” Renew. Sustain. Energy Rev., vol. 102, pp. 249–265, Mar. 2019, doi: 10.1016/j.rser.2018.12.030.
Google Scholar
22
-
P. G. V. Sampaio and M. O. A. González, “Photovoltaic solar energy: Conceptual framework,” Renew. Sustain. Energy Rev., vol. 74, pp. 590–601, Jul. 2017, doi: 10.1016/j.rser.2017.02.081.
Google Scholar
23
-
J. Kirchherr, D. Reike, and M. Hekkert, “Conceptualizing the circular economy: An analysis of 114 definitions,” Resour. Conserv. Recycl., vol. 127, pp. 221–232, Dec. 2017, doi: 10.1016/j.resconrec.2017.09.005.
Google Scholar
24
-
M. Giampietro, “On the Circular Bioeconomy and Decoupling: Implications for Sustainable Growth,” Ecol. Econ., 2019, doi: 10.1016/j.ecolecon.2019.05.001.
Google Scholar
25
-
F.-D. Vivien, M. Nieddu, N. Befort, R. Debref, and M. Giampietro, “The Hijacking of the Bioeconomy,” Ecol. Econ., vol. 159, pp. 189–197, May 2019, doi: 10.1016/j.ecolecon.2019.01.027.
Google Scholar
26
-
J. L. Cardoso, “The circular economy: historical grounds,” in Changing societies: legacies and challenges. The diverse worlds of sustainability, Imprensa de Ciências Sociais, 2018, pp. 115–127.
Google Scholar
27
-
K. Winans, A. Kendall, and H. Deng, “The history and current applications of the circular economy concept,” Renew. Sustain. Energy Rev., vol. 68, pp. 825–833, Feb. 2017, doi: 10.1016/j.rser.2016.09.123.
Google Scholar
28
-
J. Korhonen, A. Honkasalo, and J. Seppälä, “Circular Economy: The Concept and its Limitations,” Ecol. Econ., vol. 143, pp. 37–46, Jan. 2018, doi: 10.1016/j.ecolecon.2017.06.041.
Google Scholar
29
-
K. Hobson, “Closing the loop or squaring the circle? Locating generative spaces for the circular economy,” Prog. Hum. Geogr., vol. 40, no. 1, pp. 88–104, Feb. 2016, doi: 10.1177/0309132514566342.
Google Scholar
30
-
J. Singh and I. Ordoñez, “Resource recovery from post-consumer waste: important lessons for the upcoming circular economy,” J. Clean. Prod., vol. 134, pp. 342–353, Oct. 2016, doi: 10.1016/j.jclepro.2015.12.020.
Google Scholar
31
-
V. Moreau, M. Sahakian, P. van Griethuysen, and F. Vuille, “Coming Full Circle: Why Social and Institutional Dimensions Matter for the Circular Economy,” J. Ind. Ecol., vol. 21, no. 3, pp. 497–506, Jun. 2017, doi: 10.1111/jiec.12598.
Google Scholar
32
-
M. Haupt, C. Vadenbo, and S. Hellweg, “Do We Have the Right Performance Indicators for the Circular Economy?: Insight into the Swiss Waste Management System,” J. Ind. Ecol., vol. 21, no. 3, pp. 615–627, 2017, doi: 10.1111/jiec.12506.
Google Scholar
33
-
M. Niero, M. Z. Hauschild, S. B. Hoffmeyer, and S. I. Olsen, “Combining Eco-Efficiency and Eco-Effectiveness for Continuous Loop Beverage Packaging Systems: Lessons from the Carlsberg Circular Community,” J. Ind. Ecol., vol. 21, no. 3, pp. 742–753, Jun. 2017, doi: 10.1111/jiec.12554.
Google Scholar
34
-
W. Haas, F. Krausmann, D. Wiedenhofer, and M. Heinz, “How Circular is the Global Economy?: An Assessment of Material Flows, Waste Production, and Recycling in the European Union and the World in 2005,” J. Ind. Ecol., vol. 19, no. 5, pp. 765–777, Oct. 2015, doi: 10.1111/jiec.12244.
Google Scholar
35
-
H. Wu, Y. Shi, Q. Xia, and W. Zhu, “Effectiveness of the policy of circular economy in China: A DEA-based analysis for the period of 11th five-year-plan,” Resour. Conserv. Recycl., vol. 83, pp. 163–175, Feb. 2014, doi: 10.1016/j.resconrec.2013.10.003.
Google Scholar
36
-
S. Ma, S. Hu, D. Chen, and B. Zhu, “A case study of a phosphorus chemical firm’s application of resource efficiency and eco-efficiency in industrial metabolism under circular economy,” J. Clean. Prod., vol. 87, no. 1, pp. 839–849, Jan. 2015, doi: 10.1016/j.jclepro.2014.10.059.
Google Scholar
37
-
S. Ma, Z. Wen, J. Chen, and Z. Wen, “Mode of circular economy in China’s iron and steel industry: a case study in Wu’an city,” J. Clean. Prod., vol. 64, pp. 505–512, Feb. 2014, doi: 10.1016/j.jclepro.2013.10.008.
Google Scholar
38
-
J. Naustdalslid, “Circular economy in China – the environmental dimension of the harmonious society,” Int. J. Sustain. Dev. World Ecol., vol. 21, no. 4, pp. 303–313, Jul. 2014, doi: 10.1080/13504509.2014.914599.
Google Scholar
39
-
F. Blomsma and G. Brennan, “The Emergence of Circular Economy: A New Framing Around Prolonging Resource Productivity,” J. Ind. Ecol., vol. 21, no. 3, pp. 603–614, 2017, doi: 10.1111/jiec.12603.
Google Scholar
40
-
OECD, “Biomass for a Sustainable Bioeconomy: Technology and Governance. DSTI/STP/BNCT(2016)7,” 2016. [Online]. Available: https://one.oecd.org/document/DSTI/STP/BNCT(2016)7/en/pdf.
Google Scholar
41
-
Biooekonomierat, Combine Disciplines, Improve Parameters, Seek out International Partnerships. First Recommendations for Research into the Bio-Economy in Germany. 2009.
Google Scholar
42
-
M. Bugge, T. Hansen, and A. Klitkou, “What Is the Bioeconomy? A Review of the Literature,” Sustainability, vol. 8, no. 7, p. 691, Jul. 2016, doi: 10.3390/su8070691.
Google Scholar
43
-
S. F. Pfau, J. E. Hagens, B. Dankbaar, and A. J. M. Smits, “Visions of sustainability in bioeconomy research,” Sustain., vol. 6, no. 3, pp. 1222–1249, 2014, doi: 10.3390/su6031222.
Google Scholar
44
-
European Commission, “Review of the 2012 European Bioeconomy Strategy,” 2017. doi: 10.2777/086770.
Google Scholar
45
-
European Commission, A sustainable Bioeconomy for Europe: strengthening the connection between economy, society and the environment. 2018.
Google Scholar
46
-
European Commission, “Sustainable and circular biobased economy, the European way,” 2018. doi: 10.2777/159097.
Google Scholar
47
-
L. Hetemäki, M. Hanewinkel, B. Muys, M. Ollikainen, M. Palahí, and A. Trasobares, Leading the way to a European circular bioeconomy strategy. 2017.
Google Scholar
48
-
S. Venkata Mohan, S. Dahiya, K. Amulya, R. Katakojwala, and T. K. Vanitha, “Can circular bioeconomy be fueled by waste biorefineries — A closer look,” Bioresour. Technol. Reports, 2019, doi: 10.1016/j.biteb.2019.100277.
Google Scholar
49
-
M. Carus and L. Dammer, “The Circular Bioeconomy—Concepts, Opportunities, and Limitations,” Ind. Biotechnol., vol. 14, no. 2, pp. 83–91, Apr. 2018, doi: 10.1089/ind.2018.29121.mca.
Google Scholar
50
-
Directorate-General for Research and Innovation, “Review of the EU bioeconomy strategy and its action plan. Expert group report.,” 2017. doi: 10.2777/149467.
Google Scholar
51
-
IRENA, Global energy transformation: A roadmap to 2050 (2019 edition). 2019.
Google Scholar
52
-
European Commission, “Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee, the Committee of the Regions and the European Investment Bank a Clean Planet for all A European strategic long-ter,” 2018. [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52018DC0773.
Google Scholar
53
-
IEA, “[dataset] Extended world energy balances (Edition 2020). IEA World Energy Statistics and Balances (database),” 2020. https://www.oecd-ilibrary.org/content/data/88fd1acf-en (accessed Oct. 19, 2020).
Google Scholar
54
-
IEA, International Energy Agency Carbon Dioxide (CO2) Emissions from Fuel Combustion, 1751-2019. [data collection]. 13th Edition. 2020.
Google Scholar
55
-
Directorate-General for Energy (European Commission), “Clean energy for all Europeans,” 2019. doi: 10.2833/9937.
Google Scholar
56
-
IEA, Renewables Information: Overview. OECD, 2020.
Google Scholar
57
-
IEA, “Renewables 2020. Analysis and forecast to 2025.,” 2020. [Online]. Available: https://www.iea.org/reports/renewables-2020.
Google Scholar
58
-
European Commission, EU energy in figures Statistical pocketbook 2020.
Google Scholar
59
-
IEA, Outlook for Biogas and Biomethane: Prospects for Organic Growth. OECD, 2020.
Google Scholar
60
-
IEA, “World Energy Outlook 2019,” World Energy Outlook 2019, [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2019%0Ahttps://www.iea.org/reports/world-energy-outlook-2019%0Ahttps://webstore.iea.org/download/summary/2467?fileName=Japanese-Summary-WEO2019.pdf.
Google Scholar
61
-
IEA, “World Energy Model 2019,” Jan. 2019. Accessed: Nov. 18, 2019. [Online]. Available: https://www.iea.org/reports/world-energy-model.
Google Scholar
62
-
Eurostat, “[dataset] Energy Balances Database,” Statistical Office of the European Union Luxembourg, 2020. https://ec.europa.eu/eurostat/web/energy/data/energy-balances (accessed Oct. 19, 2020).
Google Scholar
63
-
G. M. Hall and J. Howe, “Energy from waste and the food processing industry,” Process Saf. Environ. Prot., vol. 90, no. 3, pp. 203–212, May 2012, doi: 10.1016/j.psep.2011.09.005.
Google Scholar
64
-
A. Ladha-Sabur, S. Bakalis, P. J. Fryer, and E. Lopez-Quiroga, “Mapping energy consumption in food manufacturing,” Trends Food Sci. Technol., vol. 86, pp. 270–280, Apr. 2019, doi: 10.1016/j.tifs.2019.02.034.
Google Scholar
65
-
R. Sims, A. Flammini, M. Puri, and S. Bracco, Opportunities for agri-food chains to become energy-smart, vol. 43, no. 2. 2015.
Google Scholar
66
-
D. Biagiotti, C. A. Campiotti, G. Giagnacovo, A. Latini, M. Scoccianti, and C. Viola, “Energy Efficiency in Italian Fruit and Vegetables Processing Industries in the EU Agro-Food Sector Context,” Riv. DI Stud. SULLA SOSTENIBILITA’, no. 2, pp. 159–174, Nov. 2014, doi: 10.3280/RISS2014-002010.
Google Scholar
67
-
FoodDrinkEurope, “Data & trends of the European food and drink industry 2020,” 2020. https://www.fooddrinkeurope.eu/publication/data-trends-of-the-european-food-and-drink-industry-2020/ (accessed Jan. 04, 2020).
Google Scholar
68
-
FAO, “Handbook Agribusiness: Fruit and Vegetable Processing,” 2009.
Google Scholar
69
-
C. Caldeira, V. De Laurentiis, S. Corrado, F. van Holsteijn, and S. Sala, “Quantification of food waste per product group along the food supply chain in the European Union: a mass flow analysis,” Resour. Conserv. Recycl., vol. 149, pp. 479–488, Oct. 2019, doi: 10.1016/j.resconrec.2019.06.011.
Google Scholar
70
-
C. Galanakis, “Food waste valorization opportunities for different food industries,” in The Interaction of Food Industry and Environment, C. Galanakis, Ed. Elsevier, 2020, pp. 341–422.
Google Scholar
71
-
S. Corrado and S. Sala, “Food waste accounting along global and European food supply chains: State of the art and outlook,” Waste Manag., vol. 79, pp. 120–131, Sep. 2018, doi: 10.1016/j.wasman.2018.07.032.
Google Scholar
72
-
European Commission, “Biodegradable waste,” 2019. https://ec.europa.eu/environment/waste/compost/index.htm (accessed Feb. 04, 2020).
Google Scholar
73
-
C. Caldeira, S. Corrado, and S. Sala, “Food waste accounting Methodologies, challenges and opportunities,” 2017. doi: 10.2760/54845.
Google Scholar
74
-
S. K. Pramanik, F. B. Suja, S. M. Zain, and B. K. Pramanik, “The anaerobic digestion process of biogas production from food waste: Prospects and constraints,” Bioresour. Technol. Reports, vol. 8, p. 100310, Dec. 2019, doi: 10.1016/j.biteb.2019.100310.
Google Scholar
75
-
F. Xu, Y. Li, X. Ge, L. Yang, and Y. Li, “Anaerobic digestion of food waste – Challenges and opportunities,” Bioresour. Technol., vol. 247, pp. 1047–1058, Jan. 2018, doi: 10.1016/j.biortech.2017.09.020.
Google Scholar
76
-
IFPRI, “IMPACT Projections of Food Production, Consumption, and Net Trade to 2050, With and Without Climate Change: Extended Country-level Results for 2019 GFPR Annex Table 6,” vol. V2. 2019, doi: 10.7910/DVN/WTWRMH.
Google Scholar
77
-
I. F. P. Research Institute (IFPRI), “2019 Global food policy report,” 2019. doi: 10.2499/9780896293502.
Google Scholar
78
-
T. Edwiges et al., “Influence of chemical composition on biochemical methane potential of fruit and vegetable waste,” Waste Manag., vol. 71, pp. 618–625, Jan. 2018, doi: 10.1016/j.wasman.2017.05.030.
Google Scholar
79
-
H. Bouallagui, Y. Touhami, R. Ben Cheikh, and M. Hamdi, “Bioreactor performance in anaerobic digestion of fruit and vegetable wastes,” Process Biochem., vol. 40, no. 3–4, pp. 989–995, Mar. 2005, doi: 10.1016/j.procbio.2004.03.007.
Google Scholar
80
-
B. S. Dhanya, A. Mishra, A. K. Chandel, and M. L. Verma, “Development of sustainable approaches for converting the organic waste to bioenergy,” Sci. Total Environ., vol. 723, p. 138109, Jun. 2020, doi: 10.1016/j.scitotenv.2020.138109.
Google Scholar
81
-
I. Esparza, N. Jiménez-Moreno, F. Bimbela, C. Ancín-Azpilicueta, and L. M. Gandía, “Fruit and vegetable waste management: Conventional and emerging approaches,” J. Environ. Manage., vol. 265, p. 110510, Jul. 2020, doi: 10.1016/j.jenvman.2020.110510.
Google Scholar
82
-
S. K. Bhatia, H.-S. Joo, and Y.-H. Yang, “Biowaste-to-bioenergy using biological methods – A mini-review,” Energy Convers. Manag., vol. 177, pp. 640–660, Dec. 2018, doi: 10.1016/j.enconman.2018.09.090.
Google Scholar
83
-
D. Elalami et al., “Effect of coupling alkaline pretreatment and sewage sludge co-digestion on methane production and fertilizer potential of digestate,” Sci. Total Environ., vol. 743, p. 140670, Nov. 2020, doi: 10.1016/j.scitotenv.2020.140670.
Google Scholar
84
-
W. Wang and D.-J. Lee, “Valorization of anaerobic digestion digestate: A prospect review,” Bioresour. Technol., vol. 323, p. 124626, Mar. 2021, doi: 10.1016/j.biortech.2020.124626.
Google Scholar
85
-
D. Divya, L. R. Gopinath, and P. Merlin Christy, “A review on current aspects and diverse prospects for enhancing biogas production in sustainable means,” Renew. Sustain. Energy Rev., vol. 42, pp. 690–699, Feb. 2015, doi: 10.1016/j.rser.2014.10.055.
Google Scholar
86
-
K. Hagos, J. Zong, D. Li, C. Liu, and X. Lu, “Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives,” Renew. Sustain. Energy Rev., vol. 76, no. March 2016, pp. 1485–1496, Sep. 2017, doi: 10.1016/j.rser.2016.11.184.
Google Scholar
87
-
L. D. Nghiem, K. Koch, D. Bolzonella, and J. E. Drewes, “Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities,” Renew. Sustain. Energy Rev., vol. 72, pp. 354–362, May 2017, doi: 10.1016/j.rser.2017.01.062.
Google Scholar
88
-
X. Wang et al., “Study on improving anaerobic co-digestion of cow manure and corn straw by fruit and vegetable waste: Methane production and microbial community in CSTR process,” Bioresour. Technol., vol. 249, pp. 290–297, Feb. 2018, doi: 10.1016/j.biortech.2017.10.038.
Google Scholar
89
-
P. Bres et al., “Performance of semi-continuous anaerobic co-digestion of poultry manure with fruit and vegetable waste and analysis of digestate quality: A bench scale study,” Waste Manag., vol. 82, pp. 276–284, Dec. 2018, doi: 10.1016/j.wasman.2018.10.041.
Google Scholar
90
-
B. Koçak, A. I. Fernandez, and H. Paksoy, “Review on sensible thermal energy storage for industrial solar applications and sustainability aspects,” Sol. Energy, vol. 209, pp. 135–169, Oct. 2020, doi: 10.1016/j.solener.2020.08.081.
Google Scholar
91
-
R. Smith, “Rethinking Future Industrial Energy Systems,” 2019, [Online]. Available: https://www.dubrovnik2019.sdewes.org/lectures.php.
Google Scholar
92
-
J.-M. Clairand, M. Briceno-Leon, G. Escriva-Escriva, and A. M. Pantaleo, “Review of Energy Efficiency Technologies in the Food Industry: Trends, Barriers, and Opportunities,” IEEE Access, vol. 8, pp. 48015–48029, 2020, doi: 10.1109/ACCESS.2020.2979077.
Google Scholar
93
-
E. S. Gaballah, T. K. Abdelkader, S. Luo, Q. Yuan, and A. El-Fatah Abomohra, “Enhancement of biogas production by integrated solar heating system: A pilot study using tubular digester,” Energy, vol. 193, p. 116758, Feb. 2020, doi: 10.1016/j.energy.2019.116758.
Google Scholar
94
-
H. M. Mahmudul, M. G. Rasul, D. Akbar, and M. Mofijur, “Opportunities for solar assisted biogas plant in subtropical climate in Australia: A review,” Energy Procedia, vol. 160, pp. 683–690, Feb. 2019, doi: 10.1016/j.egypro.2019.02.192.
Google Scholar
95
-
A. Gaur, C. Ménézo, and S. Giroux--Julien, “Numerical studies on thermal and electrical performance of a fully wetted absorber PVT collector with PCM as a storage medium,” Renew. Energy, vol. 109, pp. 168–187, Aug. 2017, doi: 10.1016/j.renene.2017.01.062.
Google Scholar
96
-
M. Greppi and G. Fabbri, “Use of microspheres in thermally insulating hybrid solar panels,” Energy Procedia, vol. 148, pp. 948–953, 2018, doi: https://doi.org/10.1016/j.egypro.2018.08.090.
Google Scholar
97
-
X. Ju, C. Xu, Y. Hu, X. Han, G. Wei, and X. Du, “A review on the development of photovoltaic/concentrated solar power (PV-CSP) hybrid systems,” Sol. Energy Mater. Sol. Cells, vol. 161, pp. 305–327, Mar. 2017, doi: 10.1016/j.solmat.2016.12.004.
Google Scholar
98
-
L. Sahota and G. N. Tiwari, “Review on series connected photovoltaic thermal (PVT) systems: Analytical and experimental studies,” Sol. Energy, vol. 150, pp. 96–127, 2017, doi: https://doi.org/10.1016/j.solener.2017.04.023.
Google Scholar
99
-
T. M. Sathe and A. S. Dhoble, “A review on recent advancements in photovoltaic thermal techniques,” Renew. Sustain. Energy Rev., vol. 76, pp. 645–672, Sep. 2017, doi: 10.1016/j.rser.2017.03.075.
Google Scholar
100
-
A. Bianchini, A. Guzzini, M. Pellegrini, and C. Saccani, “Photovoltaic/thermal (PV/T) solar system: Experimental measurements, performance analysis and economic assessment,” Renew. Energy, vol. 111, pp. 543–555, 2017, doi: https://doi.org/10.1016/j.renene.2017.04.051.
Google Scholar
101
-
M. Herrando, R. Simón, I. Guedea, and N. Fueyo, “The challenges of solar hybrid PVT systems in the food processing industry,” Appl. Therm. Eng., p. 116235, 2020, doi: https://doi.org/10.1016/j.applthermaleng.2020.116235.
Google Scholar
102
-
A. Perimenis, T. Nicolay, M. Leclercq, and P. A. Gerin, “Comparison of the acidogenic and methanogenic potential of agroindustrial residues,” Waste Manag., vol. 72, pp. 178–185, Feb. 2018, doi: 10.1016/j.wasman.2017.11.033.
Google Scholar
103
-
R. Dalpaz, O. Konrad, C. Cândido da Silva Cyrne, H. Panis Barzotto, C. Hasan, and M. Guerini Filho, “Using biogas for energy cogeneration: An analysis of electric and thermal energy generation from agro-industrial waste,” Sustain. Energy Technol. Assessments, vol. 40, p. 100774, Aug. 2020, doi: 10.1016/j.seta.2020.100774.
Google Scholar
104