##plugins.themes.bootstrap3.article.main##

The exponential population growth will put great pressure on natural resources, agriculture, energy systems and waste production. New business models and innovative technological approaches are necessary to tackle these challenges and achieve the energy transition targets set by the European Commission. Renewable energy technologies and processes such as solar photovoltaic, solar thermal and anaerobic co-digestion have become a subject of interest and research as a solution that could be fully implemented in industries and solve several environmental and economic problems. This paper discusses the possibility of integrating and complement these technologies to maximize renewable energy production and circularity.

The review was performed with a funnel approach aiming to analyze broad to specific subjects. Beginning with a literature review on the various definitions of circular economy, bioeconomy, and circular bioeconomy, ultimately proposing a single definition according to an industrial and academic scope combination, followed by a systematization and assessment of data and literature regarding energy systems present state and projections. The next phase was to assess data and literature of the fruit and vegetable processing industry from an energy consumption and biowaste production perspective to consequently discussing technologies that could help manage problems identified throughout this review. This paper culminates in propounding an Integrated Renewable Energy System conceptual model that promotes energy and waste circularity, envisioning how industries could be designed or redesigned in the future, coupled with a circular bioeconomy business model.

References

  1. World Bank, “Population Estimates and Projections,” 2019. https://datacatalog.worldbank.org/dataset/population-estimates-and-projections (accessed Aug. 28, 2019).
     Google Scholar
  2. FAO, “The future of food and agriculture: Trends and challenges.,” 2017. [Online]. Available: http://www.fao.org/3/i6583e/i6583e.pdf.
     Google Scholar
  3. FAO, “The Future of Food and Agriculture Alternative Pathways to 2050,” 2018. [Online]. Available: http://www.fao.org/3/I8429EN/i8429en.pdf.
     Google Scholar
  4. S. Kaza, L. C. Yao, P. Bhada-Tata, and F. Van Woerden, What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Washington, DC: Washington, DC: World Bank, 2018.
     Google Scholar
  5. Å. Stenmarck et al., “Estimates of European food waste levels,” 2016. [Online]. Available: https://www.eu-fusions.org/phocadownload/Publications/Estimates of European food waste levels.pdf%5Cnhttps://phys.org/news/2016-12-quarter-million-tonnes-food-logistics.html#nRlv.
     Google Scholar
  6. H. V. Singh, R. Bocca, P. Gomez, S. Dahlke, and M. Bazilian, “The energy transitions index: An analytic framework for understanding the evolving global energy system,” Energy Strateg. Rev., vol. 26, p. 100382, 2019, doi: https://doi.org/10.1016/j.esr.2019.100382.
     Google Scholar
  7. X.-C. Yuan, Y.-J. Lyu, B. Wang, Q.-H. Liu, and Q. Wu, “China’s energy transition strategy at the city level: The role of renewable energy,” J. Clean. Prod., vol. 205, pp. 980–986, Dec. 2018, doi: 10.1016/j.jclepro.2018.09.162.
     Google Scholar
  8. Q. Wang and S. Wang, “Is energy transition promoting the decoupling economic growth from emission growth? Evidence from the 186 countries,” J. Clean. Prod., vol. 260, p. 120768, Jul. 2020, doi: 10.1016/j.jclepro.2020.120768.
     Google Scholar
  9. S. Tagliapietra, G. Zachmann, O. Edenhofer, J.-M. Glachant, P. Linares, and A. Loeschel, “The European union energy transition: Key priorities for the next five years,” Energy Policy, vol. 132, pp. 950–954, Sep. 2019, doi: 10.1016/j.enpol.2019.06.060.
     Google Scholar
  10. R. Bocca, “Fostering Effective Energy Transition. 2020 edition.,” 2020. [Online]. Available: www.weforum.org.
     Google Scholar
  11. European Commission, “Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions the European Green Deal COM/2019/640 final,” 2019.
     Google Scholar
  12. European Commission, “Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions A New Industrial Strategy for Europe COM/2020/102 final,” 2020. [Online]. Available: https://ec.europa.eu/info/sites/info/files/communication-eu-industrial-strategy-march-2020_en.pdf.
     Google Scholar
  13. J. Korhonen, C. Nuur, A. Feldmann, and S. E. Birkie, “Circular economy as an essentially contested concept,” J. Clean. Prod., vol. 175, pp. 544–552, Feb. 2018, doi: 10.1016/j.jclepro.2017.12.111.
     Google Scholar
  14. EFM, “Ellen MacArthur Foundation,” 2020. https://www.ellenmacarthurfoundation.org/ (accessed Dec. 02, 2020).
     Google Scholar
  15. D. D’Amato et al., “Green, circular, bio economy: A comparative analysis of sustainability avenues,” J. Clean. Prod., vol. 168, pp. 716–734, Dec. 2017, doi: 10.1016/j.jclepro.2017.09.053.
     Google Scholar
  16. European Commission, “Innovating for Sustainable Growth: A Bioeconomy for Europe,” Ind. Biotechnol., vol. 8, no. 2, pp. 57–61, Apr. 2012, doi: 10.1089/ind.2012.1508.
     Google Scholar
  17. Institute for European Environmental Policy, “Promoting a circular, sustainable bioeconomy – delivering the bioeconomy society needs,” 2018. https://ieep.eu/news/promoting-a-circular-sustainable-bioeconomy-delivering-the-bioeconomy-society-needs (accessed Oct. 13, 2020).
     Google Scholar
  18. T. M. W. Mak, X. Xiong, D. C. W. Tsang, I. K. M. Yu, and C. S. Poon, “Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities,” Bioresour. Technol., vol. 297, p. 122497, Feb. 2020, doi: 10.1016/j.biortech.2019.122497.
     Google Scholar
  19. S. Coderoni and M. A. Perito, “Sustainable consumption in the circular economy. An analysis of consumers’ purchase intentions for waste-to-value food,” J. Clean. Prod., vol. 252, p. 119870, Apr. 2020, doi: 10.1016/j.jclepro.2019.119870.
     Google Scholar
  20. G. Garcia-Garcia, J. Stone, and S. Rahimifard, “Opportunities for waste valorisation in the food industry – A case study with four UK food manufacturers,” J. Clean. Prod., vol. 211, pp. 1339–1356, Feb. 2019, doi: 10.1016/j.jclepro.2018.11.269.
     Google Scholar
  21. N. Mirabella, V. Castellani, and S. Sala, “Current options for the valorization of food manufacturing waste: a review,” J. Clean. Prod., vol. 65, pp. 28–41, Feb. 2014, doi: 10.1016/j.jclepro.2013.10.051.
     Google Scholar
  22. Y. Jia, G. Alva, and G. Fang, “Development and applications of photovoltaic–thermal systems: A review,” Renew. Sustain. Energy Rev., vol. 102, pp. 249–265, Mar. 2019, doi: 10.1016/j.rser.2018.12.030.
     Google Scholar
  23. P. G. V. Sampaio and M. O. A. González, “Photovoltaic solar energy: Conceptual framework,” Renew. Sustain. Energy Rev., vol. 74, pp. 590–601, Jul. 2017, doi: 10.1016/j.rser.2017.02.081.
     Google Scholar
  24. J. Kirchherr, D. Reike, and M. Hekkert, “Conceptualizing the circular economy: An analysis of 114 definitions,” Resour. Conserv. Recycl., vol. 127, pp. 221–232, Dec. 2017, doi: 10.1016/j.resconrec.2017.09.005.
     Google Scholar
  25. M. Giampietro, “On the Circular Bioeconomy and Decoupling: Implications for Sustainable Growth,” Ecol. Econ., 2019, doi: 10.1016/j.ecolecon.2019.05.001.
     Google Scholar
  26. F.-D. Vivien, M. Nieddu, N. Befort, R. Debref, and M. Giampietro, “The Hijacking of the Bioeconomy,” Ecol. Econ., vol. 159, pp. 189–197, May 2019, doi: 10.1016/j.ecolecon.2019.01.027.
     Google Scholar
  27. J. L. Cardoso, “The circular economy: historical grounds,” in Changing societies: legacies and challenges. The diverse worlds of sustainability, Imprensa de Ciências Sociais, 2018, pp. 115–127.
     Google Scholar
  28. K. Winans, A. Kendall, and H. Deng, “The history and current applications of the circular economy concept,” Renew. Sustain. Energy Rev., vol. 68, pp. 825–833, Feb. 2017, doi: 10.1016/j.rser.2016.09.123.
     Google Scholar
  29. J. Korhonen, A. Honkasalo, and J. Seppälä, “Circular Economy: The Concept and its Limitations,” Ecol. Econ., vol. 143, pp. 37–46, Jan. 2018, doi: 10.1016/j.ecolecon.2017.06.041.
     Google Scholar
  30. K. Hobson, “Closing the loop or squaring the circle? Locating generative spaces for the circular economy,” Prog. Hum. Geogr., vol. 40, no. 1, pp. 88–104, Feb. 2016, doi: 10.1177/0309132514566342.
     Google Scholar
  31. J. Singh and I. Ordoñez, “Resource recovery from post-consumer waste: important lessons for the upcoming circular economy,” J. Clean. Prod., vol. 134, pp. 342–353, Oct. 2016, doi: 10.1016/j.jclepro.2015.12.020.
     Google Scholar
  32. V. Moreau, M. Sahakian, P. van Griethuysen, and F. Vuille, “Coming Full Circle: Why Social and Institutional Dimensions Matter for the Circular Economy,” J. Ind. Ecol., vol. 21, no. 3, pp. 497–506, Jun. 2017, doi: 10.1111/jiec.12598.
     Google Scholar
  33. M. Haupt, C. Vadenbo, and S. Hellweg, “Do We Have the Right Performance Indicators for the Circular Economy?: Insight into the Swiss Waste Management System,” J. Ind. Ecol., vol. 21, no. 3, pp. 615–627, 2017, doi: 10.1111/jiec.12506.
     Google Scholar
  34. M. Niero, M. Z. Hauschild, S. B. Hoffmeyer, and S. I. Olsen, “Combining Eco-Efficiency and Eco-Effectiveness for Continuous Loop Beverage Packaging Systems: Lessons from the Carlsberg Circular Community,” J. Ind. Ecol., vol. 21, no. 3, pp. 742–753, Jun. 2017, doi: 10.1111/jiec.12554.
     Google Scholar
  35. W. Haas, F. Krausmann, D. Wiedenhofer, and M. Heinz, “How Circular is the Global Economy?: An Assessment of Material Flows, Waste Production, and Recycling in the European Union and the World in 2005,” J. Ind. Ecol., vol. 19, no. 5, pp. 765–777, Oct. 2015, doi: 10.1111/jiec.12244.
     Google Scholar
  36. H. Wu, Y. Shi, Q. Xia, and W. Zhu, “Effectiveness of the policy of circular economy in China: A DEA-based analysis for the period of 11th five-year-plan,” Resour. Conserv. Recycl., vol. 83, pp. 163–175, Feb. 2014, doi: 10.1016/j.resconrec.2013.10.003.
     Google Scholar
  37. S. Ma, S. Hu, D. Chen, and B. Zhu, “A case study of a phosphorus chemical firm’s application of resource efficiency and eco-efficiency in industrial metabolism under circular economy,” J. Clean. Prod., vol. 87, no. 1, pp. 839–849, Jan. 2015, doi: 10.1016/j.jclepro.2014.10.059.
     Google Scholar
  38. S. Ma, Z. Wen, J. Chen, and Z. Wen, “Mode of circular economy in China’s iron and steel industry: a case study in Wu’an city,” J. Clean. Prod., vol. 64, pp. 505–512, Feb. 2014, doi: 10.1016/j.jclepro.2013.10.008.
     Google Scholar
  39. J. Naustdalslid, “Circular economy in China – the environmental dimension of the harmonious society,” Int. J. Sustain. Dev. World Ecol., vol. 21, no. 4, pp. 303–313, Jul. 2014, doi: 10.1080/13504509.2014.914599.
     Google Scholar
  40. F. Blomsma and G. Brennan, “The Emergence of Circular Economy: A New Framing Around Prolonging Resource Productivity,” J. Ind. Ecol., vol. 21, no. 3, pp. 603–614, 2017, doi: 10.1111/jiec.12603.
     Google Scholar
  41. OECD, “Biomass for a Sustainable Bioeconomy: Technology and Governance. DSTI/STP/BNCT(2016)7,” 2016. [Online]. Available: https://one.oecd.org/document/DSTI/STP/BNCT(2016)7/en/pdf.
     Google Scholar
  42. Biooekonomierat, Combine Disciplines, Improve Parameters, Seek out International Partnerships. First Recommendations for Research into the Bio-Economy in Germany. 2009.
     Google Scholar
  43. M. Bugge, T. Hansen, and A. Klitkou, “What Is the Bioeconomy? A Review of the Literature,” Sustainability, vol. 8, no. 7, p. 691, Jul. 2016, doi: 10.3390/su8070691.
     Google Scholar
  44. S. F. Pfau, J. E. Hagens, B. Dankbaar, and A. J. M. Smits, “Visions of sustainability in bioeconomy research,” Sustain., vol. 6, no. 3, pp. 1222–1249, 2014, doi: 10.3390/su6031222.
     Google Scholar
  45. European Commission, “Review of the 2012 European Bioeconomy Strategy,” 2017. doi: 10.2777/086770.
     Google Scholar
  46. European Commission, A sustainable Bioeconomy for Europe: strengthening the connection between economy, society and the environment. 2018.
     Google Scholar
  47. European Commission, “Sustainable and circular biobased economy, the European way,” 2018. doi: 10.2777/159097.
     Google Scholar
  48. L. Hetemäki, M. Hanewinkel, B. Muys, M. Ollikainen, M. Palahí, and A. Trasobares, Leading the way to a European circular bioeconomy strategy. 2017.
     Google Scholar
  49. S. Venkata Mohan, S. Dahiya, K. Amulya, R. Katakojwala, and T. K. Vanitha, “Can circular bioeconomy be fueled by waste biorefineries — A closer look,” Bioresour. Technol. Reports, 2019, doi: 10.1016/j.biteb.2019.100277.
     Google Scholar
  50. M. Carus and L. Dammer, “The Circular Bioeconomy—Concepts, Opportunities, and Limitations,” Ind. Biotechnol., vol. 14, no. 2, pp. 83–91, Apr. 2018, doi: 10.1089/ind.2018.29121.mca.
     Google Scholar
  51. Directorate-General for Research and Innovation, “Review of the EU bioeconomy strategy and its action plan. Expert group report.,” 2017. doi: 10.2777/149467.
     Google Scholar
  52. IRENA, Global energy transformation: A roadmap to 2050 (2019 edition). 2019.
     Google Scholar
  53. European Commission, “Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee, the Committee of the Regions and the European Investment Bank a Clean Planet for all A European strategic long-ter,” 2018. [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52018DC0773.
     Google Scholar
  54. IEA, “[dataset] Extended world energy balances (Edition 2020). IEA World Energy Statistics and Balances (database),” 2020. https://www.oecd-ilibrary.org/content/data/88fd1acf-en (accessed Oct. 19, 2020).
     Google Scholar
  55. IEA, International Energy Agency Carbon Dioxide (CO2) Emissions from Fuel Combustion, 1751-2019. [data collection]. 13th Edition. 2020.
     Google Scholar
  56. Directorate-General for Energy (European Commission), “Clean energy for all Europeans,” 2019. doi: 10.2833/9937.
     Google Scholar
  57. IEA, Renewables Information: Overview. OECD, 2020.
     Google Scholar
  58. IEA, “Renewables 2020. Analysis and forecast to 2025.,” 2020. [Online]. Available: https://www.iea.org/reports/renewables-2020.
     Google Scholar
  59. European Commission, EU energy in figures Statistical pocketbook 2020.
     Google Scholar
  60. IEA, Outlook for Biogas and Biomethane: Prospects for Organic Growth. OECD, 2020.
     Google Scholar
  61. IEA, “World Energy Outlook 2019,” World Energy Outlook 2019, [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2019%0Ahttps://www.iea.org/reports/world-energy-outlook-2019%0Ahttps://webstore.iea.org/download/summary/2467?fileName=Japanese-Summary-WEO2019.pdf.
     Google Scholar
  62. IEA, “World Energy Model 2019,” Jan. 2019. Accessed: Nov. 18, 2019. [Online]. Available: https://www.iea.org/reports/world-energy-model.
     Google Scholar
  63. Eurostat, “[dataset] Energy Balances Database,” Statistical Office of the European Union Luxembourg, 2020. https://ec.europa.eu/eurostat/web/energy/data/energy-balances (accessed Oct. 19, 2020).
     Google Scholar
  64. G. M. Hall and J. Howe, “Energy from waste and the food processing industry,” Process Saf. Environ. Prot., vol. 90, no. 3, pp. 203–212, May 2012, doi: 10.1016/j.psep.2011.09.005.
     Google Scholar
  65. A. Ladha-Sabur, S. Bakalis, P. J. Fryer, and E. Lopez-Quiroga, “Mapping energy consumption in food manufacturing,” Trends Food Sci. Technol., vol. 86, pp. 270–280, Apr. 2019, doi: 10.1016/j.tifs.2019.02.034.
     Google Scholar
  66. R. Sims, A. Flammini, M. Puri, and S. Bracco, Opportunities for agri-food chains to become energy-smart, vol. 43, no. 2. 2015.
     Google Scholar
  67. D. Biagiotti, C. A. Campiotti, G. Giagnacovo, A. Latini, M. Scoccianti, and C. Viola, “Energy Efficiency in Italian Fruit and Vegetables Processing Industries in the EU Agro-Food Sector Context,” Riv. DI Stud. SULLA SOSTENIBILITA’, no. 2, pp. 159–174, Nov. 2014, doi: 10.3280/RISS2014-002010.
     Google Scholar
  68. FoodDrinkEurope, “Data & trends of the European food and drink industry 2020,” 2020. https://www.fooddrinkeurope.eu/publication/data-trends-of-the-european-food-and-drink-industry-2020/ (accessed Jan. 04, 2020).
     Google Scholar
  69. FAO, “Handbook Agribusiness: Fruit and Vegetable Processing,” 2009.
     Google Scholar
  70. C. Caldeira, V. De Laurentiis, S. Corrado, F. van Holsteijn, and S. Sala, “Quantification of food waste per product group along the food supply chain in the European Union: a mass flow analysis,” Resour. Conserv. Recycl., vol. 149, pp. 479–488, Oct. 2019, doi: 10.1016/j.resconrec.2019.06.011.
     Google Scholar
  71. C. Galanakis, “Food waste valorization opportunities for different food industries,” in The Interaction of Food Industry and Environment, C. Galanakis, Ed. Elsevier, 2020, pp. 341–422.
     Google Scholar
  72. S. Corrado and S. Sala, “Food waste accounting along global and European food supply chains: State of the art and outlook,” Waste Manag., vol. 79, pp. 120–131, Sep. 2018, doi: 10.1016/j.wasman.2018.07.032.
     Google Scholar
  73. European Commission, “Biodegradable waste,” 2019. https://ec.europa.eu/environment/waste/compost/index.htm (accessed Feb. 04, 2020).
     Google Scholar
  74. C. Caldeira, S. Corrado, and S. Sala, “Food waste accounting Methodologies, challenges and opportunities,” 2017. doi: 10.2760/54845.
     Google Scholar
  75. S. K. Pramanik, F. B. Suja, S. M. Zain, and B. K. Pramanik, “The anaerobic digestion process of biogas production from food waste: Prospects and constraints,” Bioresour. Technol. Reports, vol. 8, p. 100310, Dec. 2019, doi: 10.1016/j.biteb.2019.100310.
     Google Scholar
  76. F. Xu, Y. Li, X. Ge, L. Yang, and Y. Li, “Anaerobic digestion of food waste – Challenges and opportunities,” Bioresour. Technol., vol. 247, pp. 1047–1058, Jan. 2018, doi: 10.1016/j.biortech.2017.09.020.
     Google Scholar
  77. IFPRI, “IMPACT Projections of Food Production, Consumption, and Net Trade to 2050, With and Without Climate Change: Extended Country-level Results for 2019 GFPR Annex Table 6,” vol. V2. 2019, doi: 10.7910/DVN/WTWRMH.
     Google Scholar
  78. I. F. P. Research Institute (IFPRI), “2019 Global food policy report,” 2019. doi: 10.2499/9780896293502.
     Google Scholar
  79. T. Edwiges et al., “Influence of chemical composition on biochemical methane potential of fruit and vegetable waste,” Waste Manag., vol. 71, pp. 618–625, Jan. 2018, doi: 10.1016/j.wasman.2017.05.030.
     Google Scholar
  80. H. Bouallagui, Y. Touhami, R. Ben Cheikh, and M. Hamdi, “Bioreactor performance in anaerobic digestion of fruit and vegetable wastes,” Process Biochem., vol. 40, no. 3–4, pp. 989–995, Mar. 2005, doi: 10.1016/j.procbio.2004.03.007.
     Google Scholar
  81. B. S. Dhanya, A. Mishra, A. K. Chandel, and M. L. Verma, “Development of sustainable approaches for converting the organic waste to bioenergy,” Sci. Total Environ., vol. 723, p. 138109, Jun. 2020, doi: 10.1016/j.scitotenv.2020.138109.
     Google Scholar
  82. I. Esparza, N. Jiménez-Moreno, F. Bimbela, C. Ancín-Azpilicueta, and L. M. Gandía, “Fruit and vegetable waste management: Conventional and emerging approaches,” J. Environ. Manage., vol. 265, p. 110510, Jul. 2020, doi: 10.1016/j.jenvman.2020.110510.
     Google Scholar
  83. S. K. Bhatia, H.-S. Joo, and Y.-H. Yang, “Biowaste-to-bioenergy using biological methods – A mini-review,” Energy Convers. Manag., vol. 177, pp. 640–660, Dec. 2018, doi: 10.1016/j.enconman.2018.09.090.
     Google Scholar
  84. D. Elalami et al., “Effect of coupling alkaline pretreatment and sewage sludge co-digestion on methane production and fertilizer potential of digestate,” Sci. Total Environ., vol. 743, p. 140670, Nov. 2020, doi: 10.1016/j.scitotenv.2020.140670.
     Google Scholar
  85. W. Wang and D.-J. Lee, “Valorization of anaerobic digestion digestate: A prospect review,” Bioresour. Technol., vol. 323, p. 124626, Mar. 2021, doi: 10.1016/j.biortech.2020.124626.
     Google Scholar
  86. D. Divya, L. R. Gopinath, and P. Merlin Christy, “A review on current aspects and diverse prospects for enhancing biogas production in sustainable means,” Renew. Sustain. Energy Rev., vol. 42, pp. 690–699, Feb. 2015, doi: 10.1016/j.rser.2014.10.055.
     Google Scholar
  87. K. Hagos, J. Zong, D. Li, C. Liu, and X. Lu, “Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives,” Renew. Sustain. Energy Rev., vol. 76, no. March 2016, pp. 1485–1496, Sep. 2017, doi: 10.1016/j.rser.2016.11.184.
     Google Scholar
  88. L. D. Nghiem, K. Koch, D. Bolzonella, and J. E. Drewes, “Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities,” Renew. Sustain. Energy Rev., vol. 72, pp. 354–362, May 2017, doi: 10.1016/j.rser.2017.01.062.
     Google Scholar
  89. X. Wang et al., “Study on improving anaerobic co-digestion of cow manure and corn straw by fruit and vegetable waste: Methane production and microbial community in CSTR process,” Bioresour. Technol., vol. 249, pp. 290–297, Feb. 2018, doi: 10.1016/j.biortech.2017.10.038.
     Google Scholar
  90. P. Bres et al., “Performance of semi-continuous anaerobic co-digestion of poultry manure with fruit and vegetable waste and analysis of digestate quality: A bench scale study,” Waste Manag., vol. 82, pp. 276–284, Dec. 2018, doi: 10.1016/j.wasman.2018.10.041.
     Google Scholar
  91. B. Koçak, A. I. Fernandez, and H. Paksoy, “Review on sensible thermal energy storage for industrial solar applications and sustainability aspects,” Sol. Energy, vol. 209, pp. 135–169, Oct. 2020, doi: 10.1016/j.solener.2020.08.081.
     Google Scholar
  92. R. Smith, “Rethinking Future Industrial Energy Systems,” 2019, [Online]. Available: https://www.dubrovnik2019.sdewes.org/lectures.php.
     Google Scholar
  93. J.-M. Clairand, M. Briceno-Leon, G. Escriva-Escriva, and A. M. Pantaleo, “Review of Energy Efficiency Technologies in the Food Industry: Trends, Barriers, and Opportunities,” IEEE Access, vol. 8, pp. 48015–48029, 2020, doi: 10.1109/ACCESS.2020.2979077.
     Google Scholar
  94. E. S. Gaballah, T. K. Abdelkader, S. Luo, Q. Yuan, and A. El-Fatah Abomohra, “Enhancement of biogas production by integrated solar heating system: A pilot study using tubular digester,” Energy, vol. 193, p. 116758, Feb. 2020, doi: 10.1016/j.energy.2019.116758.
     Google Scholar
  95. H. M. Mahmudul, M. G. Rasul, D. Akbar, and M. Mofijur, “Opportunities for solar assisted biogas plant in subtropical climate in Australia: A review,” Energy Procedia, vol. 160, pp. 683–690, Feb. 2019, doi: 10.1016/j.egypro.2019.02.192.
     Google Scholar
  96. A. Gaur, C. Ménézo, and S. Giroux--Julien, “Numerical studies on thermal and electrical performance of a fully wetted absorber PVT collector with PCM as a storage medium,” Renew. Energy, vol. 109, pp. 168–187, Aug. 2017, doi: 10.1016/j.renene.2017.01.062.
     Google Scholar
  97. M. Greppi and G. Fabbri, “Use of microspheres in thermally insulating hybrid solar panels,” Energy Procedia, vol. 148, pp. 948–953, 2018, doi: https://doi.org/10.1016/j.egypro.2018.08.090.
     Google Scholar
  98. X. Ju, C. Xu, Y. Hu, X. Han, G. Wei, and X. Du, “A review on the development of photovoltaic/concentrated solar power (PV-CSP) hybrid systems,” Sol. Energy Mater. Sol. Cells, vol. 161, pp. 305–327, Mar. 2017, doi: 10.1016/j.solmat.2016.12.004.
     Google Scholar
  99. L. Sahota and G. N. Tiwari, “Review on series connected photovoltaic thermal (PVT) systems: Analytical and experimental studies,” Sol. Energy, vol. 150, pp. 96–127, 2017, doi: https://doi.org/10.1016/j.solener.2017.04.023.
     Google Scholar
  100. T. M. Sathe and A. S. Dhoble, “A review on recent advancements in photovoltaic thermal techniques,” Renew. Sustain. Energy Rev., vol. 76, pp. 645–672, Sep. 2017, doi: 10.1016/j.rser.2017.03.075.
     Google Scholar
  101. A. Bianchini, A. Guzzini, M. Pellegrini, and C. Saccani, “Photovoltaic/thermal (PV/T) solar system: Experimental measurements, performance analysis and economic assessment,” Renew. Energy, vol. 111, pp. 543–555, 2017, doi: https://doi.org/10.1016/j.renene.2017.04.051.
     Google Scholar
  102. M. Herrando, R. Simón, I. Guedea, and N. Fueyo, “The challenges of solar hybrid PVT systems in the food processing industry,” Appl. Therm. Eng., p. 116235, 2020, doi: https://doi.org/10.1016/j.applthermaleng.2020.116235.
     Google Scholar
  103. A. Perimenis, T. Nicolay, M. Leclercq, and P. A. Gerin, “Comparison of the acidogenic and methanogenic potential of agroindustrial residues,” Waste Manag., vol. 72, pp. 178–185, Feb. 2018, doi: 10.1016/j.wasman.2017.11.033.
     Google Scholar
  104. R. Dalpaz, O. Konrad, C. Cândido da Silva Cyrne, H. Panis Barzotto, C. Hasan, and M. Guerini Filho, “Using biogas for energy cogeneration: An analysis of electric and thermal energy generation from agro-industrial waste,” Sustain. Energy Technol. Assessments, vol. 40, p. 100774, Aug. 2020, doi: 10.1016/j.seta.2020.100774.
     Google Scholar